
4.1  Introduction

Practical systems rarely have perfectly balanced loads, currents, voltages or 
impedances in all the three phases. The analysis of unbalanced cases is greatly 
simplified by the use of the techniques of symmetrical components. The method 
of symmetrical components was developed by C.L. Fortescue prior to 1920.

4.2  Symmetrical Components

Symmetrical components or Fortescue theorem: It has been proven that an 
unbalanced system of n related phasors can be resolved into n systems of 
balanced phasors referred to as symmetrical components of the original phasors.

4.2.1  Sequence Operator ‘a’

The phase sequence of the phasors or vectors is the order in which they 
pass through a positive maximum. Thus phase sequence abc implies that the 
maximum occur in the order a, b, c or R, Y, B.

When the balanced components are considered, we see that the most 
frequently occurring angle is 120°.

In complex number theory, we defined j as the complex operator which is 
equal to -1  and a magnitude of unity, and more importantly, when operated 
on any complex number rotates it anticlockwise by an angle of 90°, i.e. 
j = -1  = 190°.

Similarly, we define a new complex operator a which has a magnitude of 
unity and when operated on any complex number rotates it anticlockwise by 
an angle of 120°.

i.e. a = 1120° = –0.5 + j 0.866
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Some properties of a

a = 1120°
a2 = 1240° or 1–120° = –0.5 – j0.866
a3 = 1360° or 1
1 + a + a2 = 0

4.2.2  Types of Symmetrical Components

The unbalanced three-phase systems can be split up into the three balanced 
components, namely
	 •	 Positive sequence components
	 •	 Negative sequence components
	 •	 Zero sequence components
Positive sequence components:  It consists of three phasors which are equal 
in magnitude, equally displaced 120° from each other and having the same 
phase sequence abc.

Let Va1, Vb1 and Vc1 be the positive sequence voltages and Ia1, Ib1 and Ic1 
be the positive sequence currents. It is assumed that the subscript 1 refers to 
the positive sequence.

Va1 = Va10°	 Ia1 = Ia10°
Vb1 = Va1240° or Va1–120°	 Ib1 = Ia1240° or Ia1–120°
Vc1 = Va1120°	 Ic1 = Ia1120°

Negative sequence components: It consists of three phasors which are equal 
in magnitude, equally displaced 120° from each other and having the same 
phase sequence as opposite to acb.

Let Va2, Vb2 and Vc2 be the negative sequence voltages and Ia2, Ib2 and Ic2 
be the negative sequence currents. It is assumed that the subscript 2 refers to 
the negative sequence.
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Va2 = Va20°	 Ia2 = Ia20°
Vb2 = Va2120°	 Ib2 = Ia2120°
Vc2 = Va2240° or Va2–120°	 Ic2 = Ia2240° or Ia2–120°

Zero sequence components: It consists of three phasors which are equal in 
magnitude, and zero phase displacement from each other.

Let Va0, Vb0 and Vc0 be the zero sequence voltages and Ia0, Ib0 and Ic0 be 
the zero sequence currents. It is assumed that the subscript 0 refers to the 
zero sequence.

Figure 4.1  Phasor diagram of symmetrical components.

Va0 = Vb0 = Vc0  or  Ia0 = Ib0 = Ic0

4.2.3	 Determination of Unbalanced Vectors from 
Their Symmetrical Components

Let  Va, Vb and Vc represent an unbalanced set of voltage phasors. Figure 4.1 
(a, b and c) shows three such set of symmetrical components. Since each of 
the original unbalanced phasors is the sum of its components, the original 
phasors expressed in terms of their components are
	 Va	=	Va0 + Va1 + Va2	 (4.1)
	 Vb	=	Vb0 + Vb1 + Vb2	 (4.2)
	 Vc	=	Vc0 + Vc1 + Vc2	 (4.3)
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From the phasor diagram shown in the Figure 4.1 (a, b and c), we get

	 Va0	=	Vb0 = Vc0				    (4.4)
	 Vb1	=	Va1240° = a2Va1	 Vb2	=	Va1120° = a2Va2	 (4.5)
	 Vc1	=	Va1120° = aVa1	 Vc2	=	Va1240° = a2Va2	 (4.6)

Repeating Eq. (4.1) and substituting Eqs. (4.4), (4.5) and (4.6) in Eqs. (4.2) 
and (4.3),
	 Va	=	Va0 + Va1 + Va2	 (4.7)
	 Vb	=	Va0 + a2Va1 + aVa2	 (4.8)
	 Vc	=	Va0 + aVa1 + a2Va2	 (4.9)
In the matrix form
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The above equation can be used to calculate the unbalanced voltage vectors 
from their symmetrical components.

4.2.4	 Determination of Symmetrical Components of 
Unbalanced Vectors
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where,	 A	=	

1 1 1

1

1

2

2

a a

a a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

	 A–1	=	
1

3

1 1 1

1

1

2

2

a a

a a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 
Premultiplying Eq. (4.11) by A–1 yields
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As these relations are important, therefore we can write the separate equations 
in the expanded form

	 Va0	=	
1

3
[ ]V V Va b c+ +  	 (4.13)

	 Va1	=	
1

3
2[ ]V aV a Va b c+ + 	 (4.14)

	 Va2	=	
1

3
2[ ]V a V aVa b c+ + 	 (4.15)

The above equations can be used to calculate the symmetrical components of 
the unbalanced voltages.

The preceding equations could have been written for any set of related 
phasors, and we might have them currents instead of voltages. They are 
summarized for currents as follows.
	 Ia	=	Ia0 + Ia1 + Ia2	 (4.16)
	 Ib	=	Ia0 + a2Ia1 + aIa2	 (4.17)
	 Ic	=	Ia0 + aIa1 + a2Ia2	 (4.18)
In the matrix form
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	 (4.19)

	 Ia0	=	
1

3
[ ]I I Ia b c+ +  	 (4.20)

	 Ia1	=	
1

3
2[ ]I aI a Ia b c+ + 	 (4.21)

	 Ia2	=	
1

3
2[ ]I a I aIa b c+ + 	 (4.22)

In the matrix form
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EXAMPLE 4.1  In a 3-phase 4-wire system, the currents in R, Y and B lines 
under abnormal conditions of loading are as under:
		  IR = 10030° A;  IY = 50300° A;  IB = 30180° A
Calculate the positive, negative and zero sequence currents in the R line and 
return current in the neutral wire.
Solution:  Let IR0, IR1 and IR2 be the zero, positive and negative sequence 
currents respectively of the line current in red line.
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	 IR0	=	
1

3
[ ]I I IR Y B+ +

		 =	
1

3
100 30 50 300 30 180[ ]– – –∞ + ∞ + ∞

		 =	
1

3
86 60 50 25 43 3 30 0[( . ) ( . ) ( )]+ + - + - +j j j

		 =	
1

3
81 60 6 7 27 2 2 23 27 29 4 68( . . ) . . . .+ = + = ∞j j – A

	 IR1	=	
1

3
2[ ]I aI a IR Y B+ +

		 =	
1

3
100 30 1 120 50 300 1 120 30 180[ ]– – ¥ – – ¥ –∞ + ∞ ∞ + - ∞ ∞

		 =	
1

3
100 30 50 420 30 60[ ]– – –∞ + ∞ + ∞

		 =	
1

3
86 60 50 25 43 3 15 25 98[( . ) ( . ) ( . )]+ + + + +j j j

		 =	
1

3
126 6 119 28 42 2 39 76 57 98 43 3( . . ) . . . .+ = + = ∞j j – A

	 IR2	=	
1

3
2[ ]I a I aIR Y B+ +

		 =	
1

3
100 30 1 120 50 300 1 120 30 180[ ]– –- ¥ – – ¥ –∞ + ∞ ∞ + ∞ ∞

		 =	
1

3
100 30 50 180 30 300[ ]– – –∞ + ∞ + ∞

		 =	
1

3
86 60 50 50 0 15 25 98[( . ) ( ) ( . )]+ + - + + -j j j

		 =	
1

3
51 6 24 02 17 2 8 007 18 97 24 96( . . ) . . . .+ = + = ∞j j – A

EXAMPLE 4.2  The symmetrical components of a set of unbalanced three-
phase currents are:

		  Ia0 = 100 A;  Ia1 = 200 – j100 A;  Ia2 = –100 A

Calculate the original unbalanced phasors.
Solution:  To find the unbalanced vectors
	 Ia	=	Ia0 + Ia1 + Ia2

		 =	[100 + 200 – j100 – 100]
		 =	200 – j100 = 223.6–26.56° A
	 Ib	=	Ia0 + a2Ia1 + aIa2
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		 =	[1000° + 1–120°  223.6–26.56° + 1120°  100180°]
		 =	[1000° + 223.65213.44° + 100300°]
		 =	–36.58 + j209.8 = 21399.89° A
	 Ic	=	Ia0 + aIa1 + a2Ia2

		 =	[1000° + 1120°  223.6–26.56° + 1–120°  100180°]
		 =	[1000° + 223.6593.44° + 100420°]
		 =	136.6 + j309.8 = 338.5766.2° A

EXAMPLE 4.3  A delta connected balance resistive load is connected across 
an unbalanced three-phase supply shown in Figure 4.2 with currents in line a 
and b specified. Determine the symmetrical components of the currents.

Figure 4.2

Solution:
	 Ia	=	1030°
	 Ib	=	15–65°
In a balanced load
		  Ia + Ib + Ic = 0
	 Ic	=	– Ia – Ib

	 Ic	=	–(1030º) – (15–65°) = 17.3150°A

	 Ia0	=	
1

3
[ ]I I Ia b c+ +

		 =	
1

3
10 30 15 65 17 3 150[ . ]– –- –∞ + ∞ + ∞

		 =	
1

3
0( ) = 0 A

	 Ia1	=	
1

3
2[ ]I aI a Ia b c+ +

		 =	
1

3
10 30 1 120 15 65 1 120 17 3 150[ . ]– ∞ + – ∞ ¥ –- ∞ + –- ∞ ¥ – ∞

		 =	
1

3
33 38 15( . )– ∞  = 11.1315° A
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	 Ia2	=	
1

3
2[ ]I a I aIa b c+ +

		 =	
1

3
10 30 1 120 15 65 1 120 17 3[ . ]– –- ¥ –- – ¥ –150∞∞ + ∞ ∞ + ∞

		 =	 1

3
12 66 119 7( . . )–- ∞  = 4.22–119.7°A

4.2.5  Power in Symmetrical Components

The symmetrical components of voltages and currents are known, the power 
in a three-phase circuit can be determined from the symmetrical components. 
The total complex power flowing into three-phase circuit in all the three-phase 
lines a, b, c is
		  S P jQ VI V I V I V Ia a b b c c= + = = + +* * * * 	 (4.24)

where Va, Vb, Vc are the phase voltages and Ia, Ib, Ic are the phase currents.
The above equation can be written in the matrix form as
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 	 (4.25)

Substituting Eqs. (4.10) and (4.19) in the following equation

		  S = [AV]T [AI]*	 (4.26)
where
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		  S = AT VT A* I* = VT AT A* I*	 [ AT = A]
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The power
 	 S	=	VT AT A* I* = VT 3[U] I*
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		  S V I V I V Ia a a a a a= + +3 0 0 1 1 2 2[ ]* * * 	 (4.27)
The total unbalanced power can be obtained from the sum of symmetrical 
components of power.

4.3	 Sequence Impedance

Sequence impedance:  The sequence impedances are the impedances offered 
by the power system components or elements to positive, negative and zero 
sequence currents. 

Positive sequence impedance:  The impedance of a circuit element when 
positive sequence currents alone are flowing is called the positive sequence 
impedance. 

Negative sequence impedance:  The impedance of a circuit element when 
negative sequence currents alone are flowing is called the negative sequence 
impedance.

Zero sequence impedance:  The impedance of a circuit element when zero 
sequence currents alone are flowing is called the zero sequence impedance.

4.4	 Sequence Network of Power System 
Components

The single-phase equivalent circuit of power system consisting of impedances 
to current of any one sequence only is called sequence network.

4.4.1  Sequence Network of Unloaded Generator

Let us consider three-phase circuit diagram of unloaded generator as shown 
in Figure 4.3. The neutral of the generator is grounded through impedance.

The positive sequence reactance of a generator may be Xd or Xd or Xd 
depending upon the condition at which the reactance is calculated with positive 
sequence voltages applied. When negative sequence currents are impressed 
on the stator winding, the net flux rotates at twice the synchronous speed 
relative to the rotor. The negative sequence reactance is approximately given 
by X2  =  Xd. The zero sequence currents, when they flow, are identical and 
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the spatial distribution of the mmfs is sinusoidal. The resultant air gap flux 
due to zero sequence currents is zero. Thus, the zero sequence reactance is 
approximately the same as the leakage flux X0 = X.

Figure 4.3  Circuit diagram of unloaded generator grounded through impedance.

4.4.2  Sequence Network of Loaded Generator

Figure 4.4 represents a three phase synchronous generator with neutral is 
grounded through an impedance Zn. The synchronous generator is supplying 
a three phase balanced load.

	 Figure 4.4	 Circuit diagram of loaded synchronous generator
		  neutral is grounded through impedance.

	 Va	=	Ea – IaZs – InZn	 (4.28)
	 Vb	=	Ea – IbZs – InZn	 (4.29)
	 Vc	=	Ea – IcZs – InZn	 (4.30)
	 In	=	Ia + Ib + Ic	 (4.31)
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Substituting Eq. (4.31) in Eq. (4.28)

	 Va	=	Ea – IaZs – (Ia + Ib + Ic) Zn

	 Va	=	Ea – IaZs – IaZn – IbZn – IcZn

	 Va	=	Ea – Ia(Zs + Zn) – (Ib + Ic) Zn	 (4.32)
Similarly
	 Vb	=	Ea – Ib(Zs + Zn) – (Ia + Ic) Zn	 (4.33)

	 Vc	=	Ea – Ic(Zs + Zn) – (Ib + Ia) Zn	 (4.34)
In the matrix form
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	 (4.35)

	 V abc	=	E abc – ZabcI abc	 (4.36)
where V abc is the phase terminal voltage vector and I abc is the phase current 
vector. Converting the terminal voltages and current phasors into their 
symmetrical components result in
	 [A] [V 012]	=	[A] [E012] – [A] [Zabc] [I 012]
	 [A]–1 [A] [V 012]	=	[A]–1 [A] [E012] – [A]–1 [A] [Zabc] [I 012]
	 V 012	=	E012 – Z012I 012	 (4.37)
where
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Performing the above multiplications, we get
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Since the generated e.m.f is balanced, we have to take only the positive 
sequence voltage Ea
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Substituting for Z012 and E012 in Eq. (4.37)
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From the above equation
	 Va0	=	–(Zs + 3Zn) Ia0	 (4.41)
	 Va1	=	Ea – (Zs) Ia1	 (4.42)
 	 Va2	=	–(Zs) Ia2	 (4.43)
These may be expressed in the network form as shown in Figures 4.5.

Figure 4.5  Sequence network of a loaded generator.

4.4.3  Sequence Network of Transmission Line

The conductors of a transmission line, being passive and stationary, do not 
have an inherent direction. The transmission line (or cable) may be represented 
by a single reactance in the single-line diagram.

Thus they always have the same positive sequence impedance and negative 
sequence impedance. However, as the zero sequence paths also involve the earth 
wire and the earth return path, the zero sequence impedance is higher in value. 

The zero, positive and zero sequence impedances of transmission lines 
are represented as a series impedance in their respective sequence networks 
as shown in Figure 4.6.

Figure 4.6  Sequence network of a transmission line.

Typically, the ratio of the zero sequence impedance to the positive sequence 
impedance would be of the order of 2 for a single circuit transmission line 
with earth wire, about 3.5 for a single circuit with no earth wire or for a 
double circuit line.

For a single core cable, the ratio of the zero sequence impedance to the 
positive sequence impedance would be around 1 to 1.25.
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Transmission lines are assumed to be symmetrical in all three phases. 
However, this assumption would not be valid for long untransposed lines (say, 
beyond 500 km) as the mutual coupling between the phases would be unequal, 
and then symmetrical components cannot be used.

4.4.4  Sequence Network of Transformer

The transformer too, being passive and stationary, does not have an inherent 
direction. Thus it always has the same positive sequence impedance, negative 
sequence impedance and even the zero sequence impedance. However, the zero 
sequence paths across the windings of a transformer depend on the winding 
connections and even grounding impedance. The positive and negative sequence 
networks of a transformer are shown in Figure 4.7.

Figure 4.7  Positive and negative sequence networks of a transformer.

Zero sequence network of three phase transformers
However, the zero sequence paths across the windings of transformer 
depend on the different winding connections and even grounding impedance. 
The zero sequence network of three-phase transformer can be easily constructed 
by considering the arrangement as follows.

S.No. Primary winding (PY) Secondary winding (SY)
1. Grounded star—close ‘a’ Grounded star—close ‘b’
2. Delta—close ‘c’ Delta—close ‘d’
3. Ungrounded—open ‘a’, ‘c’ Ungrounded—open ‘b’, ‘d’

The zero sequence network of three-phase transformers is shown in 
Figure 4.8.
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Figure 4.8  Zero sequence network of three-phase transformer.

4.4.5	 Sequence Network of Star Connected Load 
Grounded Through Impedance

A three-phase balanced load with self and mutual elements is shown in 
Figure 4.9. The load neutral is grounded through an impedance Zn.
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Figure 4.9  Circuit diagram of star connected load grounded through Zn.

Lines to neutral voltages are

	 Va	=	IaZs + IbZm + IcZm + InZn	 (4.44)
	 Vb	=	IaZm + IbZs + IcZm + InZn	 (4.45)
	 Vc	=	IaZm + IbZm + IcZs + InZn	 (4.46)
From KCL, we have
		  In = Ia + Ib + Ic	 (4.47)

Substituting for In from Eq. (4.47) into Eqs. (4.44) to (4.46) and rewriting 
these equations in matrix form,
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V
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È
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Í
Í
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˘

˚
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Z Z Z Z Z Z
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Z Z Z Z Z Z
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	 (4.48)

	 V abc	=	ZabcI abc	 (4.49)
where V abc is the phase terminal voltage vector and I abc is the phase current 
vector. Converting the terminal voltages and current phasors into their 
symmetrical components result in

	 [A] [V 012]	=	[A] [Zabc] [I 012]
	 [A]–1 [A] [V 012]	=	[A]–1 [A] [Zabc] [I 012]
	 V 012	=	Z012I 012	 (4.50)
where
	 Z012 = A–1ZabcA
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Performing the above multiplications, we get
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	 (4.51)
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When there is no mutual coupling, Zm = 0. Therefore,
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	 (4.52)

Substituting for Z012 in Eq. (4.50)
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	 (4.53)

From the above equation
	 Va0	=	(Zs + 3Zn) Ia0	 (4.54)
	 Va1	=	ZsIa1	 (4.55)
 	 Va2	=	ZsIa2	 (4.56)
These may be expressed in network form as shown in Figure 4.10.

Figure 4.10  Sequence network of a star connected load grounded through impedance.

Sequence network of three-phase balance star connected 
load with solid grounded

Figure 4.11  Sequence network of a star connected load with solid grounded.
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Sequence network of three-phase balance star connected 
load ungrounded

Figure 4.12  Sequence network of a star connected load ungrounded.

Sequence network of three-phase balance delta connected load 

Figure 4.13  Sequence network of a delta connected load.

EXAMPLE 4.4  Draw the positive, negative and zero sequence impedance 
diagram.
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Solution:
Positive sequence impedance diagram

Negative sequence impedance diagram

Zero sequence impedance diagram

EXAMPLE 4.5  Draw the zero sequence networks for the system.
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Solution:
Zero sequence impedance diagram

EXAMPLE 4.6  Draw the zero sequence networks for the system.

Solution:
Zero sequence impedance diagram

4.5  Unsymmetrical Faults

On the occurrence of a fault, current and voltage conditions become abnormal, 
the delivery of power to the loads may be unsatisfactory over a considerable 
area, and if the faulted equipment is not promptly disconnected from the 
remainder of the system, damage may result to other pieces of operating 
equipment. Most of the faults that occur on power system are single line to 
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ground faults, line to line faults and double line to ground faults, with and 
without fault impedance. 

While the unbalanced currents are caused by unsymmetrical faults, the 
method of symmetrical components is used to determine the currents and 
voltages in all parts of the power system after the occurrence of the fault.

In this topic we shall first discuss faults at the terminals of unloaded 
synchronous generator with fault impedance. Then we shall consider faults on 
power system by applying Thevenin’s theorem, which allows us to find the 
fault current by replacing the entire system by a single generator and series 
impedance.

Important assumptions of power system representation
	 (i)	 Power system operates under balanced steady state conditions before 

the fault occurs. Therefore, the positive, negative and zero sequence 
networks are uncoupled before the occurrence of the fault. When an 
unsymmetrical fault occurs, they get interconnected at the point of 
fault.

	 (ii)	 Prefault load current at the point of fault is generally neglected. 
Positive sequence voltages of all the three phases are equal to the 
prefault voltage.

	 (iii)	 Transformer winding resistances and shunt admittances are neglected.
	 (iv)	 Transmission line series resistances and shunt admittances are neglected.
	 (v)	 Synchronous machine armature resistance, saliency and saturation are 

neglected.
	 (vi)	 Induction motors are either neglected or represented as synchronous 

machines.

Types of unsymmetrical faults 
	 1.	 Single line to ground fault (L–G fault)
	 2.	 Line to line fault (L–L fault)
	 3.	 Double line to ground fault (L–L–G fault)

4.5.1  Single Line to Ground Fault (L–G Fault)

Let us consider three-phase circuit diagram of unloaded generator shown in 
Figure 4.14. The neutral of the generator is grounded through impedance.

Suppose a single line to ground fault occurs on phase a through impedance 
Zf . Assuming the generator is initially on no load, the boundary conditions at 
the fault point are
	 (i)	 Va = Zf Ia	 (4.57)
	 (ii)	 Ib = Ic = 0	 (4.58)
	 (iii)	 Fault current If = Ia	 (4.59)
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Figure 4.14  Single line to ground fault through Zf on phase a of unloaded generator.

The symmetrical components of currents from Eq. (4.23) can be rewritten as 
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	 (4.60)

Substituting Eq. (4.58) in Eq. (4.60), we get
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	 (4.61)

From the above equation, we find that

		  I I I Ia a a a0 1 2
1

3
= = = 	 (4.62)

Rewriting Eq. (4.40)
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	 (4.63)

where	 zero sequence impedance, Z0 = Zs + 3Zn
		  positive sequence impedance, Z1 = Zs
		  negative sequence impedance, Z2 = Zs

		
V

V

V

E

Z

Z

Z

Ia

a

a

a

0

1

2

0

1

2

0

0

0 0

0 0

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

aa

a

a

I

I

0

1

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

	 (4.64)

From the above equation
	 Va0	=	–Z0Ia0	 (4.65)
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	 Va1	=	Ea – Z1Ia1	 (4.66)
	 Va2	=	–Z2Ia2	 (4.67)
Rewriting Eq. (4.10)
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	 (4.68)

From the above equation
		  Va = Va0 + Va1 + Va2	 (4.69)
Substituting Eqs. (4.65), (4.66) and (4.67) in Eq. (4.69), we get
	 Va	=	–Z0Ia0 + (Ea – Z1Ia1) – Z2Ia2	 (4.70)
	 Va	=	Ea – (Z0Ia0 + Z1Ia1 + Z2Ia2)	 (4.71)
Substituting Eq. (4.62) in Eq. (4.71), we get

	 Va	=	 E Z
I

Z
I

Z
I

a
a a a- + +Ê
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ˆ
¯̃0 1 23 3 3

	 (4.72)

	 Va	=	 E
I

Z Z Za
a- + +
3 0 1 2( ) 	 (4.73)

From the boundary conditions (i) Va = Zf Ia

	 E
I

Z Z Za
a- + +
3 0 1 2( ) 	=	 Zf Ia

	 3Ea – Ia (Z0 + Z1 + Z2)	=	 3Zf Ia

Therefore the fault current

		  I I
E

Z Z Z Zf a
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f

= =
+ + +

3

30 1 2

 	 (4.74)

or 
From Eq. (4.62)

		  I I I Ia a a a0 1 2
1

3
= = =

		  I I I
E

Z Z Z Za a a
a

f
0 1 2

0 1 2 3
= = =

+ + +
	 (4.75)

Suppose the fault impedance Zf = 0 (direct short-circuit)

		  I I
E

Z Z Zf a
a= =

+ +
3

0 1 2

	 (4.76)

Equations (4.62) and (4.76) can be represented by connecting the sequence 
network in series as shown in the equivalent circuit of Figure 4.15. Thus, for 
line to ground faults, the Thevenin’s impedance to the point of fault is obtained 
from each sequence network, and the three sequence networks are placed in 
series. In many practical applications, Z1 and Z2 are the same. If the neutral 
of the synchronous generator is solidly grounded, Zn = 0.
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Figure 4.15  Sequence network of single line to ground fault.

EXAMPLE 4.7  A 30 MVA, 11 kV, 3 synchronous generator has a direct 
subtransient reactance of 0.25 p.u. The negative and zero sequence reactance are 
0.35 and 0.1 p.u. respectively. The neutral of the generator is solidly grounded. 
Determine the subtransient current in the generator and the line to line voltages 
for subtransient conditions when a single line to ground fault occurs at the 
generator terminals with the generator operating unloaded at rated voltage.
Solution:  Ea = 1 p.u.
Direct subtransient reactance,	 ¢¢Xd = Z1	=	j0.25 p.u.
	 X2	=	Z2 = j0.35 p.u.
	 X0	=	Z0 = j0.1 p.u.
	 Zf	=	0

	 Fault current If = Ia	=	
3

30 1 2

E

Z Z Z Z
a

f+ + +

	 	  =	
3 1 0

0 1 0 25 0 35
4 2857

¥ .

. . .
.

j j j
j

+ +
= - p.u.

	 Base current	=	
MVA

kV
Abase

3
10

30

3 11
10 1574 593 3

b

¥ =
¥

¥ = .

	 Fault current in A	=	Fault current in p.u. (If)  base current
	 Fault current A, |If |	=	4.2857  1574.59 = 6748.22 A
The symmetrical components of the voltages from point a to ground are:

	 Ia0 = Ia1 = Ia2	 =	
E

Z Z Z Z j j j
ja

f0 1 2 3

1 0

0 1 0 25 0 35
1 4286

+ + +
=

+ +
= -.

. . .
. p.u.

	 Va0	 =	–Z0Ia0 = –(j0.1) (– j1.4286) = –0.143 p.u.
	 Va1	 =	Ea – Z1Ia1 = 1.0 – (j0.25) (– j1.4286) = 0.643 p.u.
	 Va2	 =	–Z2Ia2 = –(j0.35) (–j1.4286) = –0.50 p.u.
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Line to ground voltages are
	 Va	 =	Va0 + Va1 + Va2 = –0.143 + 0.643 – 0.50 = 0
	 Vb	 =	Va0 + a2Va1 + aVa2

		  =	–0.143 + 1–120°  0.643 + 1120°  (–0.50)
		  =	–0.143 + (–0.5 – j0.866)  0.643 + (–0.5 + j0.866)  (–0.50)
		  =	–0.215 – j0.989 p.u.
	 Vc	 =	Va0 – aVa1 + a2Va2

		  =	–0.143 + 1120°  0.643 + 1–120°  (–0.50)
		  =	–0.143 + (–0.5 + j0.8666)  0.643 + (–0.5 – j0.866)  (–0.50)
		  =	–0.215 + j0.989 p.u.
Line to line voltages are 
	 Vab	=	Va – Vb = 0 – (–0.215 – j0.989)	= 0.215 + j0.989
 					      = 1.01277.7° p.u.
	 Vbc	=	Vb – Vc	 = (–0.215 – j0.989) – (–0.215 + j0.989) 
				    = 0 – j1.978 = 1.978270° p.u.
	 Vca	=	Vc – Va	 = (–0.215 + j0.989) – (0) 
				    = –0.215 + j0.989 = –1.012102.3° p.u.
The above line voltages are expressed in per unit of the base voltage to neutral. 
Therefore, the post fault line voltages expressed in kV are

	 Vab	=	1 012 77 7 6 427 77 7. . . .– ¥ 11
3

–∞ = ∞ kV

	 Vbc	=	1 978 270 12 562 270. .– ¥ 11
3

–∞ = ∞ kV

	 Vca	=	 - ∞ = - ∞1 012 102 3 6 427 102 3. . . .– ¥ 11
3

– kV

EXAMPLE 4.8  Determine the fault current and MVA at faulted bus for a 
line to ground fault at bus 4 as shown in the figure.

G1 and G2:	 100 MVA, 11 kV, X + = X – = 15%; X0 = 5% and Xn = 6%
T1 and T2:	 100 MVA, 11/220 kV, Xleakage = 9%
L1 and L2:	 X + = X – = 10%; X0 = 10% on a base 100 MVA. Consider  

				    a fault at a phase.
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Solution:
Base MVA, MVAnew = 100 MVA
Base kV, kVnew = 220 kV

Positive and negative reactances of transmission lines L1 and L2

Xp.u.(given) = 0.10 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 220,
kVnew = 220

	 Xp.u.(new)	=	 X p.u.given
given

new

new

given

kV

kV

MVA

MVA
¥ ¥

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2

	 Xp.u.(new)	=	 j j0 1
220

220

100

100
0 1

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Zero reactance of transmission lines L1 and L2

Xp.u.(given) = 0.1 p.u.

		  X j jp.u.(new) = 0 1
220

220

100

100
0 1

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Reactance of transformers T1 and T2 (secondary)
Xp.u.(given) = 0.09 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 220,
kVnew = 220

		  X j jp.u.(new) = 0 09
220

220

100

100
0 09

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

		  Base kV on LT side of transformer T1	

		  = Base kV on HT side ¥ LT voltage rating

HT voltage rating

		  Base kV on LT side of transformer T1	=	220 ¥ 33

220
33= kV

		  kVnew	=	33 kV

Positive and negative reactances of generators G1 and G2

Xp.u.(given) = 0.15 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 11,  kVnew = ?

	 Base kV on LT side of transformer T1	

		  = Base kV on HT side ¥ LT voltage rating

HT voltage rating

	 Base kV on LT side of transformer T1	=	 220 ¥ 11

220
11= kV

	 kVnew	=	11 kV

		   X j jp.u.(new) = 0 15
11

11

100

100
0 15

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.
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Zero reactance of generators G1 and G2

Xp.u.(given) = 0.05 p.u.

		       X j jp.u.(new) = 0 05
11

11

100

100
0 05

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Neutral reactance of generators G1 and G2

Xp.u.(given) = 	0.06 p.u.

		  X j jp.u.(new) = 0 06
11

11

100

100
0 06

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Reactance diagram

Positive sequence impedance diagram

Use Thevenin’s theorem to find the positive sequence impedance Z1.



198  Electrical Power Systems: Analysis, Security and Deregulation

Negative sequence impedance diagram

Zero sequence impedance diagram
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		  Z Z j j jth = = =0 0 46 0 23 0 1533. || . .

		  Ea	 = 1 p.u.

	 Fault current If = Ia	=	
3

30 1 2

E

Z Z Z Z
a

f+ + +

		 =	 3 1 0

0 1533 0 107 0 107
8 1677

¥
+ +

= -.

. . .
.

j j j
j p.u.

	 Base current at fault point	=	
MVA

kV
Abase

b3
10

100

3 11
10 5248 643 3¥

¥
¥= = . 	

	 Fault current in A	=	fault current in p.u. (If)  base current
	 Fault current A, |If |	=	8.1677  5248.64 = 42.869 kA

4.5.2  Line to Line Fault (L–L Fault)

Let us consider three-phase circuit diagram of unloaded generator fault through 
impedance Zf between phases b and c as shown in Figure 4.16. The neutral 
of the generator is grounded through impedance. Assume that the generator 
is initially on no load. 

Figure 4.16  Line to line fault between b and c.
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The boundary conditions at the fault point are
	 (i)	 Vb – Vc = Zf Ia	 (4.77)
	 (ii)	 Ib + Ic = 0  or  Ib = – Ic	 (4.78)
	 (iii)	 Ia = 0	 (4.79)
The symmetrical components of currents from Eq. (4.23) can be rewritten as 
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	 (4.80)

Substituting Eqs. (4.78) and (4.79) in Eq. (4.80), we get
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From Eq. (4.81), we find that
	 Ia0	=	0	 (4.82)

	 Ia1	=	
1

3
2( )a a Ib- 	 (4.83)

	 Ia2	=	
1

3
2( )a a Ib- 	 (4.84)

Also, from Eqs. (4.83) and (4.84), we get
		  Ia1 = – Ia2	 (4.85)
Rewriting Eq. (4.40)
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	 (4.86)

where	 zero sequence impedance, Z0 = Zs + 3Zn
		  positive sequence impedance, Z1 = Zs
		  negative sequence impedance, Z2 = Zs
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	 (4.87)

From Eq. (4.87)
	 Va0	=	–Z0Ia0 = –Z0  0 = 0	 (4.88)
	 Va1	=	Ea – Z1Ia1	 (4.89)
	 Va2	=	–Z2Ia2	 (4.90)
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The phase currents are
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	 (4.92)

From Eq. (4.92)
	 Ia	=	0	 (4.93)
	 Ib	=	a2Ia1 – aIa1 = Ia1(a2 – a)	 (4.94)
	 Ic	=	aIa1 – a2Ia1 = Ia1(a – a2) = – Ib	 (4.95)
Rewriting Eq. (4.10)
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È
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	 (4.96)

Substituting Eq. (4.88) in Eq. (4.96), we get
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	 (4.97)

From Eq. (4.97)
	 Va	=	Va1 + Va2	 (4.98)
	 Vb	=	a2Va1 + aVa2	 (4.99)
	 Vc	=	aVa1 + a2Va2	 (4.100)

From the boundary condition (i) Vb – Vc = Zf Ia
Substituting Eqs. (4.99) and (4.100) in the above boundary conditions, we get

	 (a2Va1 + aVa2) – (aVa1 + a2Va2)	 =	Zf Ia

	 (a2 – a) (Va1 – Va2)	 =	Zf Ia	 (4.101)

Substituting the Eq. (4.94) in Eq. (4.101), we get

	 (a2 – a) (Va1 – Va2)	=	Zf (a2 – a) Ia1

	 Va1 – Va2	=	Zf Ia1	 (4.102)

Substituting Eqs. (4.89) and (4.90) in Eq. (4.102), we get

		  Ea – Z1Ia1 – (–Z2Ia2)	=	Zf Ia1

		  Ea	=	(Z1 + Z2 + Zf) Ia1	
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	 Ia1	=	
E

Z Z Z
a

f1 2+ +
	 (4.103)

	 Ia2	=	 – Ia1	 (4.104)
	 Ia0	=	 0	 (4.105)
Therefore fault current
	 If	=	Ib = – Ic = Ia1(a – a2)

	 If	=	Ib = – Ic = I ja1 3( )-

Substituting Eq. (4.103) in the above equation, we get

		  I I I j
E

Z Z Zf b c
a

f

= = - = -
+ +

( )3
1 2

	 (4.106)

Equations (4.85) and (4.103) can be represented by connecting the positive 
sequence network in parallel with negative sequence network through fault 
impedance as shown in the equivalent circuit of Figure 4.17. In many practical 
applications, Z1 and Z2 are the same. For bolted fault, Zf = 0.

Figure 4.17  Sequence network of line to line fault.

EXAMPLE 4.9  Determine the subtransient current and the line to line voltages 
at the fault under subtransient conditions when a line to line fault occurs at the 
terminals of the generator described in Example 4.7. Assume that the generator 
is unloaded and operating at rated terminal voltage when the fault occurs.
Solution:  Ea = 1 p.u.
Direct subtransient reactance,	 ¢¢X d = Z1	=	j0.25 p.u.
	 X2	=	Z2 = j0.35 p.u.
	 Zf	=	0

		  I I I j
E

Z Z Zf b c
a

f

= = - = -
+ +

( )3
1 2



Unsymmetrical Fault Analysis  203

		  Fault current, p.u.I I I j
j jf b c= = - = -

+
= -( )

.

. .
.3

1 0

0 25 0 35
2 887

	 Base current	=	
MVA

kV
Abase

3
10

30

3 11
10 1574 593 3

b

¥
¥

¥= = . 	

	 Fault current in A	=	fault current in p.u. (If)  base current
	 Fault current in A, |If |	=	2.887  1574.59 = 4545.84 A

	 Ia1 = – Ia2	 =	
E

Z Z Z j j
ja

f1 2

1 0

0 25 0 35
1 667

+ +
=

+
= -.

. .
. p.u.

	 Ia0	 =	0
	 Va0	 =	–Z0Ia0 = 0 p.u.
	 Va1	 =	Va2 = Ea – Z1Ia1 = 1.0 – (j0.25) (–j1.667) = 0.584 p.u.
Line to ground voltages are
	 Va	 =	Va0 + Va1 + Va2 = 0 + 0.584 + 0.584 = 1.168 p.u.
	 Vb	 =	Va0 + a2Va1 + aVa2

		  =	0 + 1–120°  0.584 + 1120°  (0.584)
		  =	0 + (–0.5 – j0.866)  0.584 + (–0.5 + j0.866)  (0.584)
		  =	–0.584 p.u.
	 Vc	 =	Va0 – aVa1 + a2Va2

		  =	0 + 1120°  0.584 + 1 –120°  (0.584)
		  =	0 + (–0.5 + j0.866)  0.584 + (–0.5 – j0.866)   (0.584)
		  =	–0.584 p.u.
Line to line voltages are 
	 Vab	=	Va – Vb = 1.168 + 0.584	 = 1.7520° p.u. 

				    = 1 752 0
11

3
. – ¥∞ = 11.1270° kV

	 Vbc	=	Vb – Vc = –0.584 + 0.584 = 0 kV
	 Vca	=	Vc – Va = –0.584 – 1.168	 = 1.752180° p.u.

					     = 1 752 0
11

3
. –18 ¥∞  = 11.127180° kV

EXAMPLE 4.10  Determine the fault current at the faulted bus for a line 
to line fault which occurs between phases ‘b’ and ‘c’ at bus 4 as shown in 
the figure.
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G1 and G2 :	 100 MVA, 20 kV, X + = X – = 15%; X0 = 4% and Xn = 6%
T1 and T2 :	 100 MVA, 20/345 kV, Xleakage = 9%
L1 and L2 :  X + = X – = 10%; X 0 = 40% on a base 100 MVA.

Solution:
Base MVA, MVAnew = 100 MVA
Base kV, kVnew = 345 kV

Positive and negative reactances of transmission lines L1 and L2

Xp.u.(given) = 0.10 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 345,
kVnew = 345

	 Xp.u.(new)	=	 X p.u.given
given

new

new

given

kV

kV

MVA

MVA
¥ ¥

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2

	 Xp.u.(new)	=	 j j0 1
345

345

100

100
0 1

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Zero reactance of transmission lines L1 and L2

Xp.u.(given) = 0.4 p.u.

		  X j jp.u.(new) = 0 4
345

345

100

100
0 4

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Reactance of transformers T1 and T2 (secondary)
Xp.u.(given) = 0.09 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 345
kVnew = 345

		  X j jp.u.(new) = 0 09
345

345

100

100
0 09

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

	 Base kV on LT side of transformer T1	

		  = Base kV on HT side ¥ LT voltage rating

HT voltage rating

	 Base kV on LT side of transformer T1	=	 345 ¥ 20

345
20= kV

	 kVnew	=	20 kV

Positive and negative reactances of generators G1 and G2

Xp.u.(given) = 0.15 p.u.,  MVAgiven = 100,  MVAnew = 100,  kVgiven = 20,  kVnew = ?

	 Base kV on LT side of transformer T1	

		  = Base kV on HT side ¥ LT voltage rating

HT voltage rating

	 Base kV on LT side of transformer T1	=	 345 ¥ 20

345
20= kV

	 kVnew	=	20 kV
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		  X j jp.u.(new) = 0 15
20

20

100

100
0 15

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Zero reactance of generators G1 and G2

Xp.u.(given) = 0.04 p.u.

		  X j jp.u.(new) = 0 04
20

20

100

100
0 04

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Neutral reactance of generators G1 and G2

Xp.u.(given) = 	0.06 p.u.

		  X j jp.u.(new) = 0 06
20

20

100

100
0 06

2

. .¥ ¥Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ = p.u.

Reactance diagram

Positive sequence impedance diagram

Use Thevenin’s theorem to find the positive sequence impedance Z1.
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Negative sequence impedance diagram

				   Ea	=	1 p.u.

				   Fault current, If = Ib = –Ic	=	 ( )-
+ +

j
E

Z Z Z
a

f

3
1 2

 					    =	
-

+
= -j

j j

3 1 0

0 1075 0 1075
8 056

( . )

. .
. p.u.

	 Base current at fault point	=	
MVA

kV
Abase

3
10

100

3 20
10 2886 753 3

b

¥
¥

¥= = . 	

	 Fault current in A	=	fault current in p.u. (If)  base current
	 Fault current in A, |If |	=	8.056  2886.75 = 23.254 kA

EXAMPLE 4.11  A 600 kVA, 11 kV, star connected three-phase alternator has 
positive and negative sequence reactances of 80% and 40% respectively on its 
own base. The neutral of the alternator is solidly earthed. When the alternator is 
operating on no load, with a terminal voltage of 10% in excess of the rated value, 
a line to line fault which is dead short circuit, occurs at the terminal. First fault 
currents in the alternator and also the voltage of the unfaulted phase after the 
occurrence of the fault.
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Solution:  Referring to Figure 4.16, we shall assume that the fault occurs 
across the phases b and c, and that the phase ‘a’ is the unfaulted phase; the 
generated voltage (on open circuit) of phase a is Ea = 1.1 p.u., taking the 
rated voltage as 1 p.u.

1 p.u = 11 kV (line to line)

		  11

3
kV per phase

Ea = 1.1 p.u.
		  Z1 = j0.8; Z2 = j0.4

		  Fault current I I I
j E

Z Z

j

j jf b c
a= = - =

-
+

= -
+

= -
( ) ( ) .

. .
.

3 3 1 1

0 8 0 4
1 5

1 2

¥
99 p.u.

	 Base current at fault point	=	
MVA

kV
Abase

3
10

600

3 11
10 31 493 3

b

¥
¥

¥= = . 	

	 Fault current in A	=	fault current in p.u. (If)  base current
	 Fault current in A, |If |	=	1.59  31.49 = 50 A

4.5.3  Double Line to Ground Fault (L–L–G Fault)

Figure 4.18 shows the three-phase circuit diagram of unloaded generator with 
a fault on phases b and c through impedance Zf to ground. The neutral of the 
generator is grounded through impedance. Assume the generator is initially 
on no load.

Figure 4.18  Double line to ground fault between b and c.

The boundary conditions at the fault point are
	 (i)	 Vb = Vc = Zf (Ib + Ic)	 (4.107)
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	 (ii)	 Ib + Ic = If	 (4.108)
	 (iii)	 Ia = 0	 (4.109)
The symmetrical components of current from Eq. (4.12) can be rewritten as 
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	 (4.110)

Substituting Vb = Vc in Eq. (4.110)
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From the above equation we find that

	 Va0	=	
1

3

1

3
2( ) ( )V V V V Va b b a b+ + = +

	 Va1	=	
1

3

1

3

1

3
2 2( ) ( ( ) ) ( )V aV a V V a a V V Va b b a b a b+ + = + + = - 	

	 Va2	=	
1

3

1

3

1

3
2 2( ) ( ( ) ) ( )V a V aV V a a V V Va b b a b a b+ + = + + = -

		  Va1 = Va2	 (4.111)

The phase currents are
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From the above equation
	 Ia	=	Ia0 + Ia1 + Ia2

	 Ib	=	Ia0 + a2Ia1 + aIa2

	 Ic	= Ia0 + aIa1 + a2Ia2

From the boundary condition

	 If = Ib + Ic	=	(Ia0 + a2Ia1 + aIa2) + (Ia0 + aIa1 + a2Ia2)
		 =	2Ia0 + (a2 + a) Ia1 + (a + a2) Ia2

		  =	2Ia0 + (–1) Ia1 + (–1) Ia2

	 If 	=	2 Ia0 – (Ia1 + Ia2)	 (4.112)

From the boundary condition

	 Ia	=	0
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	 Ia	=	Ia0 + Ia1 + Ia2

	 0	=	Ia0 + Ia1 + Ia2
or
		  Ia1 + Ia2 = – Ia0	 (4.113)

Substituting Eq. (4.112) in Eq. (4.111), we get

		  If = Ib + Ic = 2Ia0 + Ia0 = 3Ia0

From the boundary condition

	 Vb	=	Vc = Zf (Ib + Ic)
	 Vb	= Vc = 3Zf Ia0	 (4.114)
Rewriting the Eq. (4.10)
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	 Va	=	Va0 + Va1 + Va2	
	 Vb	=	Va0 + a2Va1 + aVa2	
but	 Va1	=	Va2

	 Vb	=	Va0 + a2Va1 + aVa1

	 Vb	=	Va0 + (a2 + a)Va1

	 Vb	=	Va0 – Va1	 (4.115)

Equating Eqs. (4.114) and (4.115)

		  Va0 – Va1 = 3Zf Ia0	 (4.116)
Rewriting Eq. (4.40)
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where	 zero sequence impedance, Z0 = Zs + 3Zn
		  positive sequence impedance, Z1 = Zs
		  negative sequence impedance, Z2 = Zs
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From the above equation
	 Va0	=	–Z0Ia0	 (4.117)
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	 Va1	=	Ea – Z1Ia1	 (4.118)
	 Va2	=	–Z2Ia2	 (4.119)

Substituting Eqs. (4.117) and (4.118) in Eq. (4.116), we get

		  –Z0Ia0 – (Ea – Z1Ia1)	=	3Zf Ia0

		  –Z0Ia0 – Ea + Z1Ia1 – 3Zf Ia0	=	0
		  – Ia0(Z0 + 3Zf )	=	Ea – Z1Ia1

		  Ia0	=	
- +

+
E Z I

Z Z
a a

f

1 1

0 3
	 (4.120)

From Eq. (4.111)
	 Va1	=	Va2

	 Ea – Z1Ia1	=	–Z2Ia2

	 Ia2	 =	
- +E Z I

Z
a a1 1

2
	 (4.121)

From Eq. (4.113)
	 Ia1	=	– Ia0 – Ia2

	 Ia1	=	 -
- +

+
Ê
ËÁ

ˆ
¯̃

-
- +Ê

ËÁ
ˆ
¯̃

E Z I

Z Z

E Z I

Z
a a

f

a a1 1

0

1 1

23

	 Ia1	=	
E

Z
Z Z Z

Z Z Z

a

f

f
1

2 0

2 0

3

3
+

+
+ +
( ) 	 (4.122)

Equations (4.119) to (4.121) can be represented by connecting the positive 
sequence impedance in series with the parallel combination of negative sequence 
and zero sequence networks as shown in the equivalent circuit of Figure 4.19. 
The value of Ia1 found from Eq. (4.121) is substituted in Eqs. (4.119) and 
(4.120), and Ia0 and Ia2 are found. Finally, the fault current is calculated from

		  If = Ib + Ic = 3Ia0	 (4.123)

Figure 4.19  Sequence network of double line to ground fault.
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EXAMPLE 4.12  Determine the subtransient current and the line to line 
voltages at the fault under subtransient conditions when double line to ground 
fault occurs at the terminals of the generator described in Example 4.7. Assume 
that the generator is unloaded and operating at rated terminal voltage when 
the fault occurs.
Solution:

Ea = 1 p.u.
Direct subtransient reactance,	 ¢¢Xd = Z1	=	j0.25 p.u.
	 X2	=	Z2 = j0.35 p.u.
	 X0	=	Z0 = j0.1 p.u.
	 Zf	=	0

	 Ia1	=	
E

Z
Z Z Z

Z Z Z

a

f

f
1

2 0

2 0

3

3
+

+
+ +
( )  = 1 0

0 25
0 35 0 1 0

0 35 0 1 0

3 05
.

.
. ( . )

. .

.
j

j j

j j

j
+ +

+ +

= - p.u. 	

	 Ia2	=	
- +E Z I

Z
a a1 1

2
 = 

- + - =1 0 0 25 3 05

0 35
0 678

. ( . ) ( . )

.
.

j j

j
j p.u.

	 Ia0	=	
- +

+
E Z I

Z Z
a a

f

1 1

0 3
 = 

- + - =1 0 0 25 3 05

0 1
2 375

. ( . ) ( . )

.
.

j j

j
j

	 If	=	Ib + Ic = 3Ia0 = 3  j2.375 = j7.125 p.u.

	 Base current	=	
MVA

kV
Abase

3
10

30

3 11
10 1574 593 3

b

¥
¥

¥= = . 	

	 Fault current in A	=	fault current in p.u. (If)  base current
	 Fault current in A, |If |	=	7.125  1574.59 = 11.22 kA
	 Ia0	=	Ia0 + Ia1 + Ia2

	 	=	j2.37 – j3.05 + j0.68 = 0
	 Ib	=	Ia0 + a2Ia1 + aIa2 = –3.229 + j3.555
	 Ic	=	Ia0 + aIa1 + a2Ia2 = 3.229 + j3.555
	 Va0	=	Va1 = Va2 = Ea – Z1Ia1 = 1.0 – ( j0.25) (– j3.05) = 0.237 p.u.

Line to ground voltages are
	 Va	=	Va0 + Va1 + Va2 
		 =	0.237 + 0.237 + 0.237 = 0.711 p.u.
	 Vb	=	0
	 Vc	=	0
Line to line voltages are

	 Vab	=	Va – Vb = 0.711 p.u. = 0 711
11

3
4 515 0. .¥ –= ∞ kV
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	 Vbc	=	Vb – Vc = 0 kV

	 Vca	=	Vc – Va = –0.711 p.u. = - = - ∞0 711
11

3
4 515 180. .¥ – kV

EXAMPLE 4.13  A three-phase generator rated 11 kV, 20 MVA has a solidly 
grounded neutral. Its positive, negative and zero sequence reactances are 60%, 
25% and 15% respectively.
	 (i)	 Determine the value of reactance that should be placed in generator 

neutral such that the current for single line to ground fault does not 
exceed the rated current.

	 (ii)	 What value of resistance in the neutral will serve the same purpose?
Solution:
	 (i)	 Ea = 1 p.u.,  Z1 = j0.60 p.u.,  Z2 = j0.25 p.u.,  Z0 = j0.15 p.u.

	 If 	=	
3

30 1 2

E

Z Z Z Z
a

n+ + +

		 =	
3 1 0

0 15 0 60 0 25 3

¥ .

. . .j j j j X n+ + +
 = 

3

1 0 3j Xn( . )+

		 =	
-
+

= - ∞
+

j

X Xn n

3

1 0 3

3 90

1 0 3. .

–

		  where Xn is the reactance connected to the neutral. Since the rated 
current is 1.0 p.u., therefore, ground fault current is also 1.0 p.u.

	 |If |	=	1 0
3

1 0 3
.

.
=

+ X n

	 Xn	=	0.666 p.u.

	 Xn (in Ohm)	=	 X n
b

b

p.u.
kV

MVA
¥

2

		 =	 0 66
11

20
4

2

. ¥ = W

	 (ii)	 To find Rn

	 If	=	
3

30 1 2

E

Z Z Z R
a

n+ + +

		 =	
3 1 0

0 15 0 60 0 25 3

¥ .

. . .j j j Rn+ + +

		 =	
3

3 1 0R jn + .

		  where Rn is the reactance connected to the neutral. Since the rated 
current is 1.0 p.u., therefore, ground fault current is also 1.0 p.u.
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	 |If |	=	1 0
3

1 0 3
.

.
=

+j Rn

	 1.0	=	
3

1 0 9 2. + Rn

	 Rn	=	0.9428 p.u.

	 Rn (in Ohm)	=	 Rn
b

b

p.u.
kV

MVA
¥

2

		 =	 0 9428
11

20
5 7

2

. .¥ = W
	 Rn	=	5.7 W

EXAMPLE 4.14  An alternator of negligible resistance, with solidly grounded 
neutral having rated voltage at no load condition is subjected to different types 
of fault at its terminal. The p.u. values of the magnitude of the fault currents 
are (i) three-phase fault = 4.0 p.u. (ii) line to ground fault = 4.2857 p.u. 
(iii) line to line fault = 2.8868 p.u. Determine the p.u. values of the sequence 
reactances of the machine.
Solution:
	 (i)	 Three-phase fault, If  = 4.0 p.u.

	 Ea	=	 ¢ = ¢¢ =E Eg g 1 0. p.u.

	 |If |	=	
| |E

X
a

d¢

	 ¢Xd 	=	
| |

| |

E

I
a

f

= =1 0

4 0
0 25

.

.
. p.u.

	 Z1	=	 ¢ =Xd 0 25. p.u.

	 (ii)	 Line to line fault, If  = 2.8868 p.u.

	 If	=	 ( )-
+

j
E

Z Z
a3

1 2

	 If	=	 ( )
.

.
-

+
j

j jZ
3

1 0

0 25 2

	 |If |	=	
3

0 25 2. + Z

	 2.8868	=	
3

0 25 2. + Z

	 0.25 + Z2	=	
3

2 8868.
	 0.25 + Z2	=	0.5999
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	 Z2	=	0.5999 – 0.25 = 0.35
	 Z2	=	0.35 p.u.

	 (iii)	 Single line to ground fault, If = 4.2857 p.u.

	 If	=	
3

0 1 2

E

Z Z Z
a

+ +

	 Z0 + Z1 + Z2	=	
| |

| |

3E

I
a

f

	 Z0 + 0.25 + 0.35	=	
3

4 2857.
	 Z0	=	0.7 – 0.25 – 0.35 = 0.1
	 Z0	=	0.1 p.u.

Review Questions 

Part-A

	 1.	 What are the symmetrical components of a three-phase system?
	 2.	 What are the positive sequence components?
	 3.	 What are the negative sequence components?
	 4.	 What are the zero sequence components?
	 5.	 What is the sequence operator?
	 6.	 Write down the equations to convert the symmetrical components into 

the unbalanced phase currents. (or) How to determine the unbalanced 
currents from the symmetrical currents?

	 7.	 Write down the equations to convert the unbalanced phase currents 
into symmetrical components. (or) How to determine the symmetrical 
currents from the unbalanced currents?

	 8.	 What are the sequence impedance and sequence network?

Part-B

	 1.	 The phase voltages across a certain load are given as follows
	 Va	=	176 – j132 V 
	 Vb	=	–128 – j96 V
	 Vc	=	–160 + j100 V
		  Compute the positive, negative and zero sequence components of voltage.
	 2.	 A balanced delta connected load is connected to a three-phase system 

and a current of 15 A is supplied to it. If the fuse of one of the lines 
melts, compute the symmetrical components of line currents.
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	 3.	 Draw the zero sequence network of the power system as shown in the 
figure below.

	 4.	 Draw the zero sequence network of the power system as shown in the 
figure below.

          

	 5.	 Draw the zero sequence network of the power system as shown in the 
figure below. Data are given below.

	 G:  Xg0	=	0.05 p.u.	 M:  Xm0	=	0.03 p.u.
	 T1:  XT1	=	0.12 p.u.	 T2:  XT2	=	0.10 p.u.
	 Line 1:  XL10	=	0.70 p.u.	 Line 2:  XL20	=	0.70 p.u.

            

	 6.	 A 50 MVA, 11 kV, synchronous generator has a subtransient reactance 
of 20%. The generator supplies two motors over a transmission 
line with transformers at both ends as shown in the figure below. 
The motors have rated inputs of 30 MVA and 15 MVA, both 10 kV, 
with 25% subtransient reactance. The three-phase transformers are 
both rated 60 MVA, 10.8/121 kV, with leakage reactance of 10% each. 
Assume zero sequence reactance for the generator and motors of 6% 
each. The current limiting reactors of 2.5 W each are connected in the 
neutral of the generator and the motor number is 2. The zero sequence 
reactance of the transmission line is 300 W. The series reactance of the 
line is 100 W. Draw the positive, negative and zero sequence networks.
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	 7.	 A 30 MVA, 13.2 kV synchronous generator has a solidly grounded 
neutral. Its positive, negative and zero sequence impedances are 0.30, 
0.40 and 0.05 p.u. respectively.

	 (a)	 What value of reactance must be placed in the generator neutral 
so that the fault current for a line to ground fault of zero fault 
impedance shall not exceed the rated line current?

	 (b)	 What value of resistance in the neutral will serve the same purpose?
	 (c)	 What value of reactance must be placed in the neutral of the 

generator to restrict the fault current to ground to rated line current 
for a double line to ground fault?

	 (d)	 What will be the magnitude of the line current when the ground 
current is restricted as above?

	 (e)	 As the reactance in the neutral is indefinitely increased, what are 
the limiting values of the line current?

	 8.	 Two alternators are operating in parallel and supplying a synchronous 
motor which is receiving 60 MW power at 0.8 power factor lagging at 
6.0 kV. The single line diagram for this system is given in the figure 
below. Data are given below. Compute the fault current when a single 
line to ground fault occurs at the middle of the line through a fault 
resistance of 4.033 W. Data are given below:

		  G1 and G2: 100 MVA, 11 kV, X + = 0.2 p.u., X – = X° = 0.1 p.u.
		  T1: 180 MVA, 11.5/115 kV, X = 0.1 p.u.
		  T2: 170 MVA, 6.6/115 kV, X = 0.1 p.u.
		  M = 160 MVA, 6.3 kV, X + = X – = 0.3 p.u., X° = 0.1 p.u.
		  Line: X + = X – = 30.25 , X° = 60.5 


